Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 897
Filtrar
1.
Mol Immunol ; 142: 37-49, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959071

RESUMO

H. pylori is one of the major causes of chronic gastritis, peptic ulcer disease (PUD), gastric mucosa-associated lymphoid tissue lymphoma (MALT) and gastric carcinoma. H. pylori toxin VacA is responsible for host cell apoptosis, whereas CagA is known to aberrantly induce expression of activation-induced cytidine deaminase (AID) in gastric epithelial cells that causes mutations in oncogenes and tumour suppressor genes, leading to the transformation of normal cells into cancerous cells. Although, a significant amount of research has been conducted to understand the role of bacterial factors modulating deregulated host cell pathways, the interaction between H. pylori and immune cells of the marginal zone and its consequences are still not well understood. HomB and HomA, outer membrane proteins (OMPs) from H. pylori, which assist in the adhesion of bacteria to host cells, are found to be associated with H. pylori virulent strains and promote inflammation. Interestingly, we observed that the interaction of HomB/HomA OMPs with B-cells transiently downregulates AID expression and Ig switch germline transcription. Downregulation of AID leads to impairment of class switch recombination (CSR), resulting in significantly reduced switching to IgG and IgA antibodies. Besides, we examined the immune-suppressive response of B-cells and observed that the cells stimulated with HomA/B show upregulation in the levels of IL10, IL35, as well as PDL1, a T-cell inhibition marker. Our study suggests the potential role of OMPs in immune response modulation strategies used by the pathogen to evade the immune response. These results provide a better understanding of H. pylori pathogenesis and assist in identifying novel targets for therapy.


Assuntos
Linfócitos B/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Citidina Desaminase/metabolismo , Helicobacter pylori/imunologia , Evasão da Resposta Imune/imunologia , Switching de Imunoglobulina/genética , Apoptose/fisiologia , Antígeno B7-H1/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Linhagem Celular Tumoral , Genes de Imunoglobulinas/genética , Infecções por Helicobacter/patologia , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Interleucina-10/metabolismo , Interleucinas/metabolismo
2.
PLoS One ; 16(10): e0258759, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34662351

RESUMO

The endocervix, the primary site of Chlamydia trachomatis (Ct) infection in women, has a unique repertoire of locally synthesized IgG and secretory IgA (SIgA) with contributions from serum IgG. Here, we assessed the ability of genital and serum-derived IgG and IgA from women with a recent positive Ct test to neutralize Ct elementary bodies (EBs) and inhibit inclusion formation in vitro in human endocervical epithelial cells. We also determined if neutralization was influenced by the major outer membrane protein (MOMP) of the infecting strain, as indicated by ompA gene sequencing and genotyping. At equivalent low concentrations of Ct EB (D/UW-3/Cx + E/UW-5/Cx)-specific antibody, genital-derived IgG and IgA and serum IgA, but not serum IgG, significantly inhibited inclusion formation, with genital IgA being most effective, followed by genital IgG, then serum IgA. The well-characterized Ct genotype D strain, D/UW-3/Cx, was neutralized by serum-derived IgG from patients infected with genotype D strains, genital IgG from patients infected with genotype D or E strains, and by genital IgA from patients infected with genotype D, E, or F strains. Additionally, inhibition of D/UW-3/Cx infection by whole serum, rather than purified immunoglobulin, was associated with levels of serum EB-specific IgG rather than the genotype of infecting strain. In contrast, a Ct genotype Ia clinical isolate, Ia/LSU-56/Cx, was neutralized by whole serum in a genotype and genogroup-specific manner, and inhibition also correlated with EB-specific IgG concentrations in serum. Taken together, these data suggest that (i) genital IgA most effectively inhibits Ct infection in vitro, (ii) human antibody-mediated inhibition of Ct infection is significantly influenced by the ompA genotype of the infecting strain, (iii) the genital antibody repertoire develops or matures differently compared to systemic antibody, and (iv) ompA genotype-specificity of inhibition of infection by whole serum can be overcome by high concentrations of Ct-specific IgG.


Assuntos
Anticorpos Neutralizantes/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Colo do Útero/imunologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Adulto , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/metabolismo , Anticorpos Neutralizantes/sangue , Proteínas da Membrana Bacteriana Externa/imunologia , Linhagem Celular , Colo do Útero/citologia , Colo do Útero/virologia , Chlamydia trachomatis/genética , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Feminino , Genótipo , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/metabolismo , Imunoglobulina G/sangue , Imunoglobulina G/metabolismo , Filogenia , Análise de Sequência de DNA , Adulto Jovem
3.
J Immunol ; 207(4): 1138-1149, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34341168

RESUMO

Group A streptococcal infections are a significant cause of global morbidity and mortality. A leading vaccine candidate is the surface M protein, a major virulence determinant and protective Ag. One obstacle to the development of M protein-based vaccines is the >200 different M types defined by the N-terminal sequences that contain protective epitopes. Despite sequence variability, M proteins share coiled-coil structural motifs that bind host proteins required for virulence. In this study, we exploit this potential Achilles heel of conserved structure to predict cross-reactive M peptides that could serve as broadly protective vaccine Ags. Combining sequences with structural predictions, six heterologous M peptides in a sequence-related cluster were predicted to elicit cross-reactive Abs with the remaining five nonvaccine M types in the cluster. The six-valent vaccine elicited Abs in rabbits that reacted with all 11 M peptides in the cluster and functional opsonic Abs against vaccine and nonvaccine M types in the cluster. We next immunized mice with four sequence-unrelated M peptides predicted to contain different coiled-coil propensities and tested the antisera for cross-reactivity against 41 heterologous M peptides. Based on these results, we developed an improved algorithm to select cross-reactive peptide pairs using additional parameters of coiled-coil length and propensity. The revised algorithm accurately predicted cross-reactive Ab binding, improving the Matthews correlation coefficient from 0.42 to 0.74. These results form the basis for selecting the minimum number of N-terminal M peptides to include in potentially broadly efficacious multivalent vaccines that could impact the overall global burden of group A streptococcal diseases.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Transporte/imunologia , Reações Cruzadas/imunologia , Vacinas Estreptocócicas/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Epitopos/imunologia , Feminino , Humanos , Masculino , Camundongos , Peptídeos/imunologia , Vacinas Sintéticas/imunologia
4.
Anal Bioanal Chem ; 413(23): 5885-5900, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34341841

RESUMO

A peptide from the P0 acidic ribosomal protein (pP0) of ticks conjugated to keyhole limpet hemocyanin from Megathura crenulata has shown to be effective against different tick species when used in host vaccination. Turning this peptide into a commercial anti-tick vaccine will depend on finding the appropriate, technically and economically feasible way to present it to the host immune system. Two conjugates (p64K-Cys1pP0 and p64K-ßAla1pP0) were synthesized using the p64K carrier protein from Neisseria meningitidis produced in Escherichia coli, the same cross-linking reagent, and two analogues of pP0. The SDS-PAGE analysis of p64K-Cys1pP0 showed a heterogeneous conjugate compared to p64K-ßAla1pP0 that was detected as a protein band at 91kDa. The pP0/p64K ratio determined by MALDI-MS for p64K-Cys1pP0 ranged from 1 to 8, being 3-5 the predominant ratio, while in the case of p64K-ßAla1pP0 this ratio was 5-7. Cys1pP0 was partially linked to 35 out of 39 Lys residues and the N-terminal end, while ßAla1pP0 was mostly linked to the six free cysteine residues, to the N-terminal end, and, in a lesser extent, to Lys residues. The assignment of the conjugation sites and side reactions were based on the identification of type 2 peptides. Rabbit immunizations showed the best anti-pP0 titers and the highest efficacy against Rhipicephalus sanguineus ticks when the p64K-Cys1pP0 was used as vaccine antigen. The presence of high molecular mass aggregates observed in the SDS-PAGE analysis of p64K-Cys1pP0 could be responsible for a better immune response against pP0 and consequently for its better efficacy as an anti-tick vaccine. Graphical abstract.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Cromatografia Líquida/métodos , Neisseria meningitidis/imunologia , Espectrometria de Massas em Tandem/métodos , Carrapatos/imunologia , Vacinas/imunologia , Animais , Eletroforese em Gel de Poliacrilamida , Hemocianinas/imunologia , Coelhos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
5.
Fish Shellfish Immunol ; 115: 189-197, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34147613

RESUMO

The present study examines the effectiveness of DNA vaccine against Aeromonas hydrophila through oral route using chitosan-tripolyphosphate (Cs-TPP) nanoparticles encapsulation. The virulent gene of outer membrane protein (OMP) and hemolysin (hly) related to pathogenicity of A. hydrophila was used to construct a DNA vaccine using pVAX1, and the construct was named as pVAX-OMP and pVAX-hly DNA vaccines. The pVAX-OMP and pVAX-hly DNA vaccines were encapsulated by Cs-TPP nanoparticles and size measured by field emission scanning electron microscopy (FE-SEM). The encapsulation efficiency of Cs-TPP nanoparticles was found to be 79.6% for pVAX-OMP DNA and 82.3% for pVAX-hly DNA binding with Cs-TPP nanoparticles. The stability and invitro release profile of plasmid DNA was also determined after encapsulation using DNase and chitosanase. DNA vaccines distribution in tissues was investigated in fish fed with the pVAX-OMP, pVAX-hly and pVAX-OMP+pVAX-hly encapsulated in Cs-TPP nanoparticles and confirmed by PCR and multiplex PCR. The results suggest that Cs-TPP nanoparticles encapsulated DNA vaccine delivered into fish by feeding. After oral vaccination of Labeo rohita were challenged with A. hydrophila by intraperitoneal injection. Relatively, gene expression of c- and g-type lysozyme followed by pro- and anti-inflammatory cytokines (Interlukin-10 and Tumor Growth Factor ß) was up-regulated in heart and kidney for pVAX-OMP+pVAX-hly vaccinated group. Moreover, fish fed with pVAX-OMP+pVAX-hly encapsulated in Cs-TPP nanoparticles had a significantly higher survival rate (76.2%) against A. hydrophila. This study concludes that pVAX-OMP and pVAX-hly DNA vaccines can be delivered orally using Cs-TPP nanoparticles for protection against A. hydrophilainfection.


Assuntos
Vacinas Bacterianas/administração & dosagem , Quitosana/análogos & derivados , Cyprinidae , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Vacinação/veterinária , Vacinas de DNA/administração & dosagem , Administração Oral , Aeromonas hydrophila/fisiologia , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Quitosana/administração & dosagem , Quitosana/imunologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Proteínas Hemolisinas/imunologia , Nanopartículas/administração & dosagem
6.
Future Microbiol ; 16(3): 143-157, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33528272

RESUMO

Aim: Iron uptake and metabolism pathways are promising targets in vaccine development as an alternative strategy for antibiotics. Methods & methods: HemTR, a putative heme receptor of Acinetobacter baumannii, was expressed and its protectivity against A. baumannii was determined singly or in combination with the siderophore receptor, BauA, in mice. Results: High level of IgG was elicited. There was a delay in mice mortality with reduced bacterial loads in internal organs in the sublethal challenge. Protection was better in the HemTR-BauA group in both lethal and sublethal challenges. Passive transfer of anti-HemTR and anti-BauA partially protected mice against A. baumannii infection. Conclusion: HemTR in combination with other iron receptors could contribute to the development of protective vaccines against A. baumannii.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Receptores de Superfície Celular/imunologia , Sepse/prevenção & controle , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Animais , Carga Bacteriana , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/genética , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Modelos Animais de Doenças , Feminino , Heme/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Superfície Celular/administração & dosagem , Receptores de Superfície Celular/genética , Sepse/imunologia , Sepse/microbiologia
7.
Protein Expr Purif ; 180: 105818, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33418060

RESUMO

Campylobacteriosis is a disease in humans caused by the infection from Campylobacter spp. Human cases are mainly due to Campylobacter jejuni, although C. coli can cause gastroenteritis in humans as well. The bacteria are commensal in chicken tract and can be contaminated into chicken products during processing. Obviously, detecting reagents such as a specific antibody is essential for the development of immune-based detection methods for C. jejuni or C. coli. In this study, in silico techniques were used to design a chimeric recombinant antigen, named multiepitope antigen (MEA), for the production of specific polyclonal antibody. To design MEA polypeptide based on C. jejuni fibronectin-binding protein or CadF, four conserved and unique antigenic peptides were identified and fused together directly. The C. jejuni CadF-based MEA polypeptide fused with two single six-histidine tags at both C- and N-terminal ends was expressed under Escherichia coli expression system. The recombinant MEA was successfully produced and purified by Ni-NTA resin with a high satisfactory yield. Indirect ELISA results showed that anti-MEA polyclonal antibody derived from rabbit serum had a titer of 16,000, indicating high antigenicity of MEA polypeptide. Dot blot results also confirmed that the produced anti-MEA antibody could specifically recognize both C. jejuni and C. coli whole cells as expected while there was no cross-reactivity to non-Campylobacter spp. tested in this study.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias , Proteínas da Membrana Bacteriana Externa , Campylobacter coli , Campylobacter jejuni , Proteínas de Transporte , Epitopos , Expressão Gênica , Proteínas Recombinantes de Fusão , Animais , Anticorpos Antibacterianos/química , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Campylobacter coli/química , Campylobacter coli/genética , Campylobacter coli/imunologia , Campylobacter jejuni/química , Campylobacter jejuni/genética , Campylobacter jejuni/imunologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Epitopos/biossíntese , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Coelhos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia
8.
Gut Microbes ; 13(1): 1-13, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33382363

RESUMO

Infection with Helicobacter pylori is the single greatest risk factor for developing gastric adenocarcinoma. In prospective, population-based studies, seropositivity to the uncharacterized H. pylori proteins Hp0305 and Hp1564 was significantly associated with cancer risk in East Asia. However, the mechanism underlying this observation has not been elucidated. Here, we show that Hp0305 and Hp1564 act in concert with previously ascribed H. pylori virulence mechanisms to orchestrate cellular alterations that promote gastric carcinogenesis. In samples from 546 patients exhibiting premalignant gastric lesions, seropositivity to Hp0305 and Hp1564 was significantly associated with increased gastric atrophy across all stomach conditions. In vitro, depletion of Hp0305 and Hp1564 significantly reduced levels of gastric cell-associated bacteria and markedly impaired the ability of H. pylori to stimulate pro-inflammatory cytokine production. Remarkably, our studies revealed that Hp1564 is required for translocation of the oncoprotein CagA into gastric epithelial cells. Our data provide experimental insight into the molecular mechanisms governing novel H. pylori pathogenicity factors that are strongly associated with gastric disease and highlight the potential of Hp0305 and Hp1564 as robust molecular tools that can improve identification of individuals that are highly susceptible to gastric cancer. We demonstrate that Hp0305 and Hp1564 augment H. pylori-mediated inflammation and gastric cancer risk by promoting key bacteria-gastric cell interactions that facilitate delivery of oncogenic microbial cargo to target cells. Thus, therapeutically targeting microbial interactions driven by Hp0305/Hp1564 may enable focused H. pylori eradication strategies to prevent development of gastric malignancies in high-risk populations.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Helicobacter pylori/patogenicidade , Lesões Pré-Cancerosas/microbiologia , Neoplasias Gástricas/microbiologia , Anticorpos Antibacterianos/sangue , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Linhagem Celular , Citocinas/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Pepsinogênio A/sangue , Pepsinogênio C/sangue , Lesões Pré-Cancerosas/sangue , Neoplasias Gástricas/sangue
9.
Pharmacol Res ; 161: 105288, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33160070

RESUMO

Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Over one billion people and millions of dogs live in endemic areas for leishmaniases and are at risk of infection. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection that could develop into a deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, the results of the present study confirm the immunostimulating properties of WSP highlighting a potential therapeutic efficacy against Leishmania parasites. Furthermore, Asaia was designed as a delivery system for WSP, thus developing a novel type of immunomodulating agent, worthy of being investigated for immuno-prophylaxis and -therapy of leishmaniases and other diseases that could be subverted by M1 macrophage activation.


Assuntos
Acetobacteraceae/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Imunidade Inata , Leishmania infantum/imunologia , Vacinas contra Leishmaniose/imunologia , Ativação de Macrófagos , Macrófagos/microbiologia , Macrófagos/parasitologia , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Linhagem Celular , Citocinas/metabolismo , Vetores Genéticos , Interações Hospedeiro-Parasita , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/ultraestrutura , Vacinas contra Leishmaniose/genética , Vacinas contra Leishmaniose/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Fagocitose , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Vacinas de DNA/imunologia
10.
Front Immunol ; 11: 1879, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973778

RESUMO

Outer Membrane Vesicles (OMVs) derived from different Gram-negative bacteria have been proposed as an attractive vaccine platform because of their own immunogenic adjuvant properties. Pertussis or whooping cough is a highly contagious vaccine-preventable respiratory disease that resurged during the last decades in many countries. In response to the epidemiological situation, new boosters have been incorporated into vaccination schedules worldwide and new vaccine candidates have started to be designed. Particularly, our group designed a new pertussis vaccine candidate based on OMVs derived from Bordetella pertussis (BpOMVs). To continue with the characterization of the immune response induced by our OMV based vaccine candidate, this work aimed to investigate the ability of OMVs to activate the inflammasome pathway in macrophages. We observed that NLRP3, caspase-1/11, and gasdermin-D (GSDMD) are involved in inflammasome activation by BpOMVs. Moreover, we demonstrated that BpOMVs as well as transfected B. pertussis lipooligosaccharide (BpLOS) induce caspase-11 (Casp11) and guanylate-binding proteins (GBPs) dependent non-canonical inflammasome activation. Our results elucidate the mechanism by which BpOMVs trigger one central pathway of the innate response activation that is expected to skew the adaptive immune response elicited by BpOMVs vaccination.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Inflamassomos/imunologia , Macrófagos/imunologia , Vacina contra Coqueluche/imunologia , Coqueluche/prevenção & controle , Animais , Bordetella pertussis/imunologia , Células Cultivadas , Humanos , Ativação de Macrófagos/imunologia , Camundongos
11.
ACS Appl Mater Interfaces ; 12(37): 41138-41147, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32830477

RESUMO

Cell membrane camouflaged nanoparticles (NPs) have been increasingly explored to leverage natural cellular functions and adapt to various biomedical applications. Herein, we report an OMV-CC hybrid membrane, which consists of a bacterial outer membrane vesicle (OMV) and B16-F10 cancer cell (CC) membrane, and successfully coat it onto hollow polydopamine (HPDA) NPs. We harness the advantage of OMV immunotherapy together with HPDA-mediated photothermal therapy (PTT) to improve the antitumor efficacy toward melanoma. When injected intravenously via the tail vein, HPDA@[OMV-CC] NPs homogeneously target melanoma and activate the immune response by rapidly stimulating dendritic cell (DC) maturation in lymph nodes in the vaccinated mice. Our results show that the antitumor immune response and PTT reciprocally potentiate the therapeutic ability and fully eradicate melanoma without notable adverse effects. The homogeneous-target and immune activation hybrid biomimetic membrane provides the adaptability to various synergistic therapeutic and imaging applications by incorporating payload with application-specific functions.


Assuntos
Antineoplásicos/farmacologia , Proteínas da Membrana Bacteriana Externa/imunologia , Membrana Celular/efeitos dos fármacos , Indóis/farmacologia , Melanoma Experimental/tratamento farmacológico , Nanopartículas/química , Terapia Fototérmica , Polímeros/farmacologia , Animais , Antineoplásicos/química , Proteínas da Membrana Bacteriana Externa/química , Linhagem Celular Tumoral , Membrana Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/química , Melanoma Experimental/patologia , Camundongos , Tamanho da Partícula , Polímeros/química , Porosidade , Propriedades de Superfície
12.
Vet Microbiol ; 246: 108732, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32605752

RESUMO

Campylobacter jejuni colonizes the chicken gut at a high density without causing disease. However, consumption of poultry products contaminated with this bacterium causes gastroenteritis in humans. Therefore, it is critically important to reduce the Campylobacter burden in poultry products to prevent transmission to humans. Evidence indicates that enhancing intestinal mucosal immune responses is of paramount importance for preventing or reducing Campylobacter colonization in chickens. In view of this, the present study was undertaken to evaluate host responses to different C. jejuni-derived ligands, including lipooligosaccharide (LOS), outer membrane proteins (OMPs), and genomic DNA, with the ultimate goal of identifying a ligand with potent immunostimulatory capacity to serve as a mucosal vaccine adjuvant against enteric infections in chickens. The results revealed that C. jejuni pathogen-associated molecular patterns (PAMPs) varied in their ability to induce the expression of cytokines and chemokines in chicken macrophages and cecal tonsil mononuclear cells and nitric oxide production in macrophages. In addition, C. jejuni OMPs demonstrated superior activity over LOS and DNA ligands in eliciting cytokine expression associated with T helper (Th)1 and Th2 responses (interferon [IFN]-γ and interleukin [IL]-13, respectively), in addition to expression of pro-inflammatory cytokines (IL-1ß), chemokine (CXCLi2), and regulatory cytokines (IL-10 and TGFß1/4) in cecal tonsil cells. Importantly, in addition to their ability to induce innate responses, OMPs could also function as antigens to elicit C. jejuni-specific antibody responses and thereby confer dual protection against C. jejuni infection. Further studies are required to assess the protective efficacy of C. jejuni OMPs against C. jejuni infection in chickens.


Assuntos
Campylobacter/imunologia , Quimiocinas/genética , Citocinas/genética , Imunidade nas Mucosas , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Adjuvantes Imunológicos/análise , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Campylobacter/genética , Galinhas/imunologia , DNA Bacteriano/imunologia , Interações Hospedeiro-Patógeno/imunologia , Leucócitos Mononucleares/microbiologia , Ligantes , Lipopolissacarídeos/imunologia , Macrófagos/microbiologia , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Tonsila Palatina/microbiologia
13.
Nanomedicine ; 29: 102257, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32610072

RESUMO

Vaccine developmental strategies are utilizing antigens encapsulated in biodegradable polymeric nanoparticles. Here, we developed a Chlamydia nanovaccine (PLGA-rMOMP) by encapsulating its recombinant major outer membrane protein (rMOMP) in the extended-releasing and self-adjuvanting PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. PLGA-rMOMP was small (nanometer size), round and smooth, thermally stable, and exhibited a sustained release of rMOMP. Stimulation of mouse primary dendritic cells (DCs) with PLGA-rMOMP augmented endosome processing, induced Th1 cytokines (IL-6 and IL-12p40), and expression of MHC-II and co-stimulatory (CD40, CD80, and CD86) molecules. BALB/c mice immunized with PLGA-rMOMP produced enhanced CD4+ T-cells-derived memory (CD44high CD62Lhigh), and effector (CD44high CD62Llow) phenotypes and functional antigen-specific serum IgG antibodies. In vivo biodistribution of PLGA-rMOMP revealed its localization within lymph nodes, suggesting migration from the injection site via DCs. Our data provide evidence that the PLGA (85:15) nanovaccine activates DCs and augments Chlamydia-specific rMOMP adaptive immune responses that are worthy of efficacy testing.


Assuntos
Imunidade Adaptativa/genética , Proteínas da Membrana Bacteriana Externa/genética , Nanopartículas/química , Vacinas/imunologia , Imunidade Adaptativa/imunologia , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Antígenos CD4/química , Antígenos CD4/imunologia , Chlamydia/genética , Chlamydia/imunologia , Chlamydia/patogenicidade , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Receptores de Hialuronatos/química , Receptores de Hialuronatos/imunologia , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Selectina L/química , Selectina L/imunologia , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/imunologia , Linfócitos T/imunologia , Vacinas/genética
14.
Sci Rep ; 10(1): 10152, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576914

RESUMO

Chlamydia infection and disease are endemic in free-ranging koalas. Antibiotics remain the front line treatment for Chlamydia in koalas, despite their rates of treatment failure and adverse gut dysbiosis outcomes. A Chlamydia vaccine for koalas has shown promise for replacing antibiotic treatment in mild ocular Chlamydia disease. In more severe disease presentations that require antibiotic intervention, the effect of vaccinating during antibiotic use is not currently known. This study investigated whether a productive immune response could be induced by vaccinating koalas during antibiotic treatment for Chlamydia-induced cystitis. Plasma IgG antibody levels against the C. pecorum major outer membrane protein (MOMP) dropped during antibiotic treatment in both vaccinated and unvaccinated koalas. Post-treatment, IgG levels recovered. The IgG antibodies from naturally-infected, vaccinated koalas recognised a greater proportion of the MOMP protein compared to their naturally-infected, unvaccinated counterparts. Furthermore, peripheral blood mononuclear cell gene expression revealed an up-regulation in genes related to neutrophil degranulation in vaccinated koalas during the first month post-vaccination. These findings show that vaccination of koalas while they are being treated with antibiotics for cystitis can result in the generation of a productive immune response, in the form of increased and expanded IgG production and host response through neutrophil degranulation.


Assuntos
Antibacterianos/uso terapêutico , Formação de Anticorpos , Vacinas Bacterianas/imunologia , Infecções por Chlamydia , Chlamydia/imunologia , Cistite/microbiologia , Cistite/terapia , Imunoglobulina G/sangue , Phascolarctidae/imunologia , Vacinação , Animais , Antibacterianos/efeitos adversos , Proteínas da Membrana Bacteriana Externa/imunologia , Degranulação Celular/genética , Cistite/imunologia , Feminino , Masculino , Neutrófilos/imunologia , Neutrófilos/fisiologia
15.
Microb Cell Fact ; 19(1): 119, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493405

RESUMO

BACKGROUND: The well-known fact that avian pathogenic Escherichia coli (APEC) is harder to prevent due to its numerous serogroups has promoted the development of biological immunostimulatory materials as new vaccine candidates in poultry farms. Bacterial outer membrane vesicles (OMVs), known as spherical nanovesicles enriched with various immunostimulants, are naturally secreted by Gram-negative bacteria, and have gained much attention for developing effective vaccine candidates. Recent report has demonstrated that OMVs of APEC O78 can induce protective immunity in chickens. Here, a novel multi-serogroup OMVs (MOMVs) vaccine was developed to achieve cross-protection against APEC infection in broiler chickens. RESULTS: In this study, OMVs produced by three APEC strains were isolated, purified and prepared into MOMVs by mixing these three OMVs. By using SDS-PAGE and LC-MS/MS, 159 proteins were identified in MOMVs and the subcellular location and biological functions of 20 most abundant proteins were analyzed. The immunogenicity of MOMVs was evaluated, and the results showed that MOMVs could elicit innate immune responses, including internalization by chicken macrophage and production of immunomodulatory cytokines. Vaccination with MOMVs induced specific broad-spectrum antibodies as well as Th1 and Th17 immune responses. The animal experiment has confirmed that immunization with an appropriate dose of MOMVs could not cause any adverse effect and was able to reduce bacteria loads and pro-inflammatory cytokines production, thus providing effective cross-protection against lethal infections induced by multi-serogroup APEC strains in chickens. Further experiments indicated that, although vesicular proteins were able to induce stronger protective efficiency than lipopolysaccharide, both vesicular proteins and lipopolysaccharide are crucial in MOMVs-mediated protection. CONCLUSIONS: The multi-serogroup nanovesicles produced by APEC strains will open up a new way for the development of next generation vaccines with low toxicity and broad protection in the treatment and control of APEC infection.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Membrana Externa Bacteriana/imunologia , Galinhas/imunologia , Proteção Cruzada , Vacinas contra Escherichia coli/imunologia , Doenças das Aves Domésticas/prevenção & controle , Animais , Anticorpos Antibacterianos/imunologia , Citocinas/imunologia , Escherichia coli/imunologia , Macrófagos/imunologia
16.
Clin Exp Allergy ; 50(8): 954-963, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32501552

RESUMO

BACKGROUND: IgE-mediated food allergy remains a significant and growing worldwide problem. Sublingual immunotherapy (SLIT) shows an excellent safety profile for food allergy, but the clinical efficacy needs to be improved. This study assessed the effects of the Toll-like receptor 4 agonist outer membrane protein (Omp) 16 from Brucella abortus combined with cow´s milk proteins (CMP) through the sublingual route to modulate cow's milk allergy in an experimental model. METHODS: Mice sensitized with cholera toxin and CMP were orally challenged with the allergen to elicit hypersensitivity reactions. Then, mice were treated with a very low amount of CMP along with Omp16 as a mucosal adjuvant, and finally, animals were re-exposed to CMP. Systemic and mucosal immune parameters were assessed in vivo and in vitro. RESULTS: We found that the sublingual administration of Omp16 + CMP induced a buccal Th1 immune response that modulated the intestinal allergic response with the suppression of symptoms, reduction of IgE and IL-5, and up-regulation of IgG2a and IFN-γ. The adoptive transfer of submandibular IFN-γ-producing α4ß7+ CD4+ and CD8+ cells conferred protection against allergic sensitization. The use of Omp16 + CMP promoted enhanced protection compared to CMP alone. CONCLUSION: In conclusion, Omp16 represents a promising mucosal adjuvant that can be used to improve the clinical and immune efficacy of SLIT for food allergy.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Alérgenos/administração & dosagem , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas de Ciclo Celular/administração & dosagem , Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Hipersensibilidade a Leite/terapia , Proteínas do Leite/administração & dosagem , Imunoterapia Sublingual , Subpopulações de Linfócitos T/efeitos dos fármacos , Administração Sublingual , Transferência Adotiva , Alérgenos/imunologia , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Ciclo Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Imunoglobulina E/metabolismo , Imunoglobulina G/metabolismo , Interferon gama/metabolismo , Interleucina-5/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos BALB C , Hipersensibilidade a Leite/imunologia , Hipersensibilidade a Leite/metabolismo , Proteínas do Leite/imunologia , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/imunologia , Mucosa Bucal/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/transplante , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo
17.
Cancer Immunol Immunother ; 69(12): 2465-2476, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32556443

RESUMO

Emm55 is a bacterial gene derived from Streptococcus pyogenes (S. pyogenes) that was cloned into a plasmid DNA vaccine (pAc/emm55). In this study, we investigated the anti-tumor efficacy of pAc/emm55 in a B16 murine melanoma model. Intralesional (IL) injections of pAc/emm55 significantly delayed tumor growth compared to the pAc/Empty group. There was a significant increase in the CD8+ T cells infiltrating into the tumors after pAc/emm55 treatment compared to the control group. In addition, we observed that IL injection of pAc/emm55 increased antigen-specific T cell infiltration into tumors. Depletion of CD4+ or CD8+ T cells abrogated the anti-tumor effect of pAc/emm55. Combination treatment of IL injection of pAc/emm55 with anti-PD-1 antibody significantly delayed tumor growth compared to either monotherapy. pAc/emm55 treatment combined with PD-1 blockade enhanced anti-tumor immune response and improved systemic anti-tumor immunity. Together, these strategies may lead to improvements in the treatment of patients with melanoma.


Assuntos
Antígenos de Bactérias/imunologia , Antineoplásicos Imunológicos/administração & dosagem , Proteínas da Membrana Bacteriana Externa/imunologia , Imunoterapia/métodos , Melanoma Experimental/terapia , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral/transplante , Terapia Combinada/métodos , Feminino , Humanos , Injeções Intralesionais , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/imunologia , Camundongos , Plasmídeos/administração & dosagem , Plasmídeos/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia
18.
Int J Biol Macromol ; 150: 400-412, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32045605

RESUMO

We have previously demonstrated that human vaginal Lactobacillus crispatus 2029 (LC2029) strain is highly adhesive to cervicovaginal epithelial cells, exhibits antagonistic activity against genitourinary pathogens and expresses surface-layer protein (Slp). The aims of the present study were elucidation of Slp structural and immunomodulatory characteristics and its roles in protective properties of the whole vaginal LC2029 bacteria against foodborne pathogens. Enteric Caco-2 and colon HT-29 cell lines were used as the in vitro models of the human intestinal epithelial layer. LC2029 strain has two homologous surface-layer (S-layer) genes, slp1 and slp2. Whilst we found no evidence for the expression of slp1 under the growth conditions used, a very high level of expression of the slp2 gene was detected. C-terminal part of the amino sequence of Slp2 protein was found to be highly similar to that of the conserved C-terminal region of SlpA protein of L. crispatus Zj001 isolated from pig intestines and CbsA protein of L. crispatus JCM5810 isolated from chicken intestines, and was substantially variable at the N-terminal and middle regions. The amino acid sequence identity between SlpA and CbsA was as high as 84%, whilst the identity levels of these sequences with that of Slp2 were only 49% and 50% (respectively). LC2029 strain was found to be both acid and bile tolerant. Survival in simulated gastric and intestinal juices of LC2029 cells unable to produce Slp2 was reduced by 2-3 logs. Vaginal L. crispatus 1385 (LC1385) strain not expressing Slp was also very sensitive to gastric and intestinal stresses. Slp2 was found to be non-covalently bound to the surface of the bacterium, acting as an adhesin and facilitating interaction of LC2029 lactobacilli with the host immature or fully differentiated Caco-2 cells, as well as HT-29 cells. No toxicity to or damage of Caco-2 or HT-29 epithelial cells were detected after 24 h of colonization by LC2029 lactobacilli. Both Slp2 protein and LC2029 cells induced NF-kB activation in Caco-2 and HT-29 cells, but did not induce expression of innate immunity mediators Il-8, Il-1ß, and TNF-α. Slp2 and LC2029 inhibited Il-8 production in Caco-2 and HT-29 cells induced by MALP-2 and increased production of anti-inflammatory cytokine Il-6. Slp2 inhibited production of CXCL1 and RANTES by Caco-2 cells during differentiation and maturation process within 15 days. Culturing Caco-2 and HT-29 cells in the presence of Slp2 increased adhesion of bifidobacteria BLI-2780 to these enterocytes. Upon binding to Caco-2 and HT-29 cells, Slp2 protein and LC2029 lactobacilli were recognized by toll-like receptors (TLR) 2/6. It was shown that LC2029 strain is a strong co-aggregator of foodborne pathogens Campylobacter jejuni, Salmonella enteritidis, and Escherichia coli O157:H used in this study. The Slp2 was responsible for the ability of LC2029 to co-aggregate these enteropathogens. Slp2 and intact LC2029 lactobacilli inhibited foodborne pathogen-induced activation of caspase-9 and caspase-3 as apoptotic biomarkers in Caco-2 and HT-29 cells. In addition, Slp2 and Slp2-positive LC2029 strain reduced adhesion of tested pathogenic bacteria to Caco-2 and HT-29 cells. Slp2-positive LC2029 strain but not Slp2 alone provided bactericidal effect on foodborne pathogens. These results suggest a range of mechanisms involved in inhibition of growth, viability, and cell-adhesion properties of pathogenic Proteobacteria by the Slp2 producing LC2029, which may be useful in treatment of necrotizing enterocolitis (NEC) in newborns and foodborne infectious diseases in children and adults, increasing the colonization resistance and maintaining the intestinal homeostasis.


Assuntos
Antibiose , Doenças Transmitidas por Alimentos/dietoterapia , Doenças Transmitidas por Alimentos/microbiologia , Imunomodulação , Lactobacillus crispatus/fisiologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/imunologia , Probióticos , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Ácidos e Sais Biliares , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Sobrevivência Celular , Células Epiteliais , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Estresse Fisiológico , Relação Estrutura-Atividade
19.
J Biol Chem ; 295(12): 3826-3836, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32029479

RESUMO

Group A streptococcus (Strep A) surface M protein, an α-helical coiled-coil dimer, is a vaccine target and a major determinant of streptococcal virulence. The sequence-variable N-terminal region of the M protein defines the M type and also contains epitopes that promote opsonophagocytic killing of streptococci. Recent reports have reported considerable cross-reactivity among different M types, suggesting the prospect of identifying cross-protective epitopes that would constitute a broadly protective multivalent vaccine against Strep A isolates. Here, we have used a combination of immunological assays, structural biology, and cheminformatics to construct a recombinant M protein-based vaccine that included six Strep A M peptides that were predicted to elicit antisera that would cross-react with an additional 15 nonvaccine M types of Strep A. Rabbit antisera against this recombinant vaccine cross-reacted with 10 of the 15 nonvaccine M peptides. Two of the five nonvaccine M peptides that did not cross-react shared high sequence identity (≥50%) with the vaccine peptides, implying that high sequence identity alone was insufficient for cross-reactivity among the M peptides. Additional structural analyses revealed that the sequence identity at corresponding polar helical-wheel heptad sites between vaccine and nonvaccine peptides accurately distinguishes cross-reactive from non-cross-reactive peptides. On the basis of these observations, we developed a scoring algorithm based on the sequence identity at polar heptad sites. When applied to all epidemiologically important M types, this algorithm should enable the selection of a minimal number of M peptide-based vaccine candidates that elicit broadly protective immunity against Strep A.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos/imunologia , Streptococcus pyogenes/metabolismo , Vacinas Sintéticas/imunologia , Algoritmos , Sequência de Aminoácidos , Animais , Reações Antígeno-Anticorpo , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Análise por Conglomerados , Reações Cruzadas , Epitopos/imunologia , Peptídeos/química , Conformação Proteica em alfa-Hélice , Coelhos , Streptococcus pyogenes/imunologia
20.
Vaccine ; 38(4): 942-950, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31727504

RESUMO

Outer surface protein A (OspA) is a Borrelia lipoprotein and an established Lyme disease vaccine target. Admixing non-lipidated, recombinant B. burgdorferi OspA with liposomes containing cobalt porphyrin-phospholipid (CoPoP) resulted in rapid, particulate surface display of the conformationally intact antigen. Particleization was serum-stable and led to enhanced antigen uptake in murine macrophages in vitro. Mouse immunization using CoPoP liposomes that also contained a synthetic monophosphoryl lipid A (PHAD) elicited a Th1-biased OspA antibody response with higher IgG production compared to other vaccine adjuvants. Antibodies were reactive with intact B. burgdorferi spirochetes and Borrelia lysates, and induced complement-mediated borreliacidal activity in vitro. One year after initial immunization, mice maintained high levels of circulating borreliacidal antibodies capable of blocking B. burgdorferi transmission from infected ticks to human blood in a feeding chamber.


Assuntos
Antígenos de Superfície/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Lipoproteínas/imunologia , Vacinas contra Doença de Lyme/administração & dosagem , Doença de Lyme/prevenção & controle , Vacinação , Animais , Formação de Anticorpos/imunologia , Cobalto/química , Feminino , Imunogenicidade da Vacina , Lipossomos , Doença de Lyme/imunologia , Vacinas contra Doença de Lyme/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos ICR , Fosfolipídeos/química , Porfirinas/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA